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Natural products were analyzed to determine whether they contain appealing novel scaffold architectures
for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of
structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are
not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated.
Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed
using a self-organizing map. Obviously, current trade drugs and natural products have several topological
pharmacophore patterns in common. These features can be systematically explored with selected combinatorial
libraries based on a combination of natural product-derived and synthetic molecular building blocks.

Collections of natural compounds are generally considered
as a rich source of valuable biologically active substances.1

Many current drugs either mimic naturally occurring mol-
ecules or have structures that are fully or in part taken from
such natural motifs.2-4 It is evident that natural substances
offer a wealth of biostructural information that can be used
to guide drug discovery and molecular design projects.5,6 In
this work, we have analyzed and compared collections of
natural substances against trade drugs in order to reveal novel
scaffold architectures for potential use in combinatorial
chemistry.

Two data sets were compiled from commercially available
databases. Trade drugs were taken from the Derwent World
Drug Index (WDI),7 where all structures with a trade name
entry were selected. Molecules with a calculated molecular
weight (MWc) below 100 were omitted. This resulted in a
total number of 5757 compounds (“trade drugs”). A total of
10 495 natural products were compiled from the BioscreenNP
database.8 A total of 60-65% of this library are compounds
of plant origin, and 5-10% were isolated from microorgan-
isms, with about 5% stem from marine species and the rest
from other natural sources. The Daylight program toolkit was
used for calculation of molecular weight and numbers of
heteroatoms and hydrogen-bond donors.9 Estimation of the
octanol-water partition coefficient (logPc) was done using
the routine of Meylan and Howard.10

To get an overview, we compared the two data sets using
complete molecules (Table 1). The average calculated
molecular weight is almost identical for trade drugs (MWc

) 356) and for natural products (MWc ) 360), where the
trade drugs show a broader distribution (std dev) 261,
compared to std dev) 166). The average logPc values are
slightly higher for the natural product collection (logPc )

2.9) than for trade drugs (logPc ) 2.5). The most obvious
difference between the two data sets is, however, the average
number of nitrogen atoms per molecule. This finding is also
supported by other investigations.11 A drug molecule contains
approximately twice the number of nitrogens (2.3) than a
natural product (1.4). This ratio is also reflected in the
average number of potential hydrogen-bond donor sites. In
contrast, the average number of oxygen atoms per molecule
is almost identical (approximately four per molecule) in both
collections. A surprising observation is that the fraction of
structures leading to at least two “rule-of-5” violations is
low in both compound sets (approximately 10%). A violation
was recorded if MWc > 500, or logPc > 5, or if the sum of
nitrogen and oxygen atoms present in a molecule exceeded
10, or if the total number of potential hydrogen-bond donors
was greater than 5.12 We had expected that natural products
lead to a higher fraction of alerts. To check whether this is
a consequence of a biased data set, we performed the same
analysis with a Roche in-house compilation of natural
substances (not shown). With only minor deviations the
qualitative result was identical to the numbers given in Table
1.

Comparison of Scaffold Structures

For identification of ring systems that may form drug
scaffolds, a two-step scheme was applied.13 First, cyclic
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Table 1. Comparison of Whole Molecule Properties

parameter trade drugsa natural productsa

total no. of molecules 5757 10495
MWc 356(261) 360(166)
log Pc 2.1(3.0) 2.9(2.9)
〈H donors/molecule〉 2.5 1.8
〈N/molecule〉 2.3 1.4
〈O/molecule〉 4.1 4.3
“rule-of-5” alerts 10% 12%
a Numbers in parentheses are standard deviations.
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molecular subgraphs were identified. In the second step
cleavage rules were applied to remove side chains and linkers
connecting different ring systems belonging to the same
molecule. Any single bond connecting a ring atom to a side
chain was cleaved. Double and triple bonds connecting a
ring atom to a side chain were left unchanged (not removed)
to protect the existing conjugated systems. These rules were
exhaustively applied to a moleculesto the resulting fragment
setssuntil all susceptible bonds were cleaved. Finally, the
remaining fragments (ring systems) were loaded into a
Daylight database for further analysis. The algorithms for
ring extraction and the cleavage rules were implemented in
the C programming language using the Daylight Reaction
Toolkit.9

We found 1748 different ring systems in the BioscreenNP
natural products collection and 807 different ring systems
in WDI trade drugs. Approximately 35% of the trade drug
ring systems are also present in the natural product collection,
but only 17% of the ring systems found in natural products
have an identical counterpart in the WDI trade drugs (Figure
1, most left bars). This finding demonstrates a relatively
larger diversity of ring systems present in natural sub-
stances.5,11 A more detailed comparison of structural similar-
ity using the Tanimoto similarity coefficient based on
Daylight’s structural fingerprints indicates that today’s trade
drugs contain many structural features that are also found
in natural products.14 Again, significantly more (sub)structure
similarities are observed comparing natural products to the
trade drug collection (black bars in Figure 1) than vice versa
(white bars in Figure 1). From this analysis we conclude
that there is a clear structural overlap between the two data
collections, but natural products contain many additional
central ring systems that could be explored in drug discovery
projects.

On average, the trade drugs’ ring systems are smaller than
the ring systems in natural products. This finding is valid
for both the numbers of atoms involved and the numbers of
rings connected. A total of 27% of the central ring systems
consist of a single five- or six-member ring in the trade drug
collection, compared to only 16% for the natural products.
Most structures contain two rings forming the “scaffold”
(approximately 30% of both data sets), and in approximately

9% of all structures the scaffold ring system contains exactly
10 atoms (e.g., six- plus five-membered rings annealed).

A selection of ring systems found only in the natural
product collection is shown in Figure 2. Some ring systems
present only in the trade drug collection are shown in Figure
3. These structures were identified by a Jarvis-Patrick
clustering procedure of the pooled data sets.15 Classification
was again based on Daylight’s structural fingerprints and
the Tanimoto index as a similarity criterion. Two structures
clustered together if they had at least eight out of their 14
nearest neighbors in common. The ring systems shown in
Figures 2 and 3 form five individual structural classes each
(pure clusters), denoted by A-E.

Comparison of Topological Pharmacophore Patterns

To compare the collections of trade drugs and natural
compounds in a “pharamcophore space” rather than in a
purely structure-oriented fashion like the Tanimoto approach
with structural fingerprints, we trained a self-organizing map
(SOM).16-18 All molecules were represented by a simple
topological pharmacophore descriptor, which is based on a
topological correlation of generalized atom types (lipophilic,
hydrogen-bond donors and acceptors, positive and negative

Figure 1. Distribution of nearest-neighbor Tanimoto similarity
values obtained from a comparison between ring systems derived
from trade drugs and natural products. The two bars on the left
give the fraction of identical scaffolds found by pairwise comparison
(Tanimoto index is greater than 0.99).

Figure 2. Ring systems found in natural products but not in the
trade drug collection. Parts A-E form separate structural clusters.

Figure 3. Ring systems found in trade drugs but not in the
collection of natural products. Parts A-E form separate structural
clusters.
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charge centers); for the five atom types there are 15 possible
pairs. Distance between pairs of atoms was defined as the
shortest topological path connecting the two nodes in the
molecular graph. Distances between 1 and 10 bonds were
considered in the present study. This led to a 15× 10 )
150-dimensional vector description of a molecule, giving a
relative frequency of atom type pairs over bonds in the
molecular graph. Since the raw counts were scaled by the
number of non-hydrogen atoms present in a molecule, one
might regard the descriptor as giving the potential “interac-
tion pair load” of a structure. This molecular representation
is rotation- and translation-invariant, and thus, the problem
of pairwise structural alignment was avoided. This has been
shown to be suited for database similarity searching and de
novo design in the absence of three-dimensional conformer
models.19-21 Further details about the topological pharma-
cophore descriptor and SOM can be found elsewhere.17-21

The idea of the topological pharmacophore space conse-
quently follows Carhart’s concept of atom-pair descrip-
tors.22,23

For graphical display the molecule distributions in this
150-dimensional bond-count pharmacophore space were
projected onto a toroidal map consisting of (20× 20) )
400 neurons (clusters) using Kohonen’s SOM algorithm,16

as implemented in the NEUROMAP package.18 As a result
of this mapping procedure, each neuron represents a cluster
of molecules having certain features in common; i.e., the
molecules are more similar to each other than to any other
molecule in the data set. SOM development is comparable
to Voronoi tesselation of the high-dimensional data space,
reflecting a vector quantization process.16 The mapping error
can be defined by the mean quantization error, mqe,24

whereN is the total number of molecules used for SOM
training, Rc is the “receptive field” (Voronoi region) of a
neuron c,x is the 150-dimensional molecular descriptor, and
w is the 150-dimensional cluster centroid (neuron vector).

To determine the classification accuracy of an SOM, the
correlation coefficient, cc, according to Matthews was
calculated (vide infra for details):25

In eq 2,P is the number of positive correct predictions,N is
the number of negative correct predictions,O is the number
of false-positive predictions (overprediction), andU is the
number of false-positive predictions (underprediction).

Both natural products and trade drugs exhibit pharmaco-
logical activity. To see whether the topological pharmacoph-
ore descriptor is able to separate “drugs” from “nondrugs”s
and thus may be used to analyze “drug-relevant” pharmaco-
phoric spaceswe first developed an SOM using Sadowski’s
collection of drugs and nondrugs (Figure 4).26 This data set
was compiled from the WDI (4998 drugs) and the Available
Chemicals Directory (ACD;27 4282 nondrugs). For details
about this data set and its limitations, see the original

publication.26 The SOM projection reveals a separation
between drugs and nondrugs in topological pharmacophore
space, as indicated by the light and dark areas in Figure 4a.
Neuron (4/4) represents a pure nondrug cluster (white color).
Neurons (7/5), (8/4), and (8/6) contain only drug molecules
(black color). All other clusters are mixed. The mean
quantization error indicating how well the SOM clusters
represent the molecule data was mqe) 0.6. To estimate the
classification ability of this SOM, a binary pattern class
assignment was introduced (Figure 4b): A cluster was
regarded as “druglike” (black color) if it contained more than
50% of drug molecules; otherwise, it was regarded as
belonging to the “non-drug-like” class (white color). In
contrast to U-matrix methods for class assignment, no
borderline clusters (no assignment of data to any of the
pattern classes) were considered here.28 The resulting binary
class distribution clearly shows a drug and a nondrug region.
Note that the map forms a torus. On the basis of this binary
classification, 3447 WDI drugs (69%) and 2708 ACD
nondrugs (64%) were correctly classified, yielding a Mat-
thews correlation coefficient of cc) 0.33. From the
observation of distinct preferred drug and nondrug regions
we concluded that the topological pharmacophore vector was
suited for the analysis of “drug-relevant” pharmacophore
space. The binary prediction accuracy obtained (cc) 0.33)
is low compared to the much higher accuracy that can be
yielded by supervised techniques and more problem-specific
molecular descriptors.26,29,30 It must be stressed that in the
present study the SOM was not intended to form a prediction
system. The aim was to visualize the distributions of
compound libraries in a high-dimensional space. The projec-
tion shown in Figure 4a is a topology-preserving map of the
150-dimensional pharmacophore space containing drugs and
nondrugs.

After the applicability of the topological pharmacophore
descriptor to analyzing “drug-relevant” space was demon-
strated, the next step was to map the space filled with the
natural products and trade drugs. Figure 5a shows the
distribution of trade drugs, and Figure 5b shows the natural
products map. In Figure 5c the binary classification based
on the clustering of natural products and trade drugs is given.

mqe)
1

N
∑

c
∑
x∈Rc

||x - wc||2 (1)

cc ) PN - OU

x(N + U)(N + O)(P + U)(P + O)
(2)

Figure 4. Self-organizing map (SOM) projection of a topological
pharmacophore space filled with 4998 “drugs” and 4282 “non-
drugs”, where each square represents a cluster of molecules
(Voronoi region): (a) ratio of drugs and nondrugs clustered shown
by gray-scale shading (white is 100% nondrugs, black is 100%
drugs); (b) binary classification of the clusters shown in (a), where
black clusters contain more drugs than nondrugs and white clusters
contain more nondrugs than drugs (50% threshold). Note that the
(10 × 10) map forms a torus.
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The SOM’s mean quantization error was mqe) 2.8, and
the binary classification accuracy based on the cluster
assignment shown in Figure 5c was cc) 0.29 (correct
predictions: 32% of the trade drugs, 91% of the natural
compounds). Despite the higher resolution of the map, the
cc is lower and the mqe is higher than the values obtained
for the drug/nondrug data (Figure 4), indicating less pro-
nounced separation of natural products and trade drugs in
topological pharmacophore space. Both trade drugs and
natural products fill the whole space in the (20× 20) map
shown in Figure 5, with peaks in neurons (4/7) and (3/8).
These clusters contain many natural steroids. Almost identical
coverage of pharmacophore space by trade drugs and natural
products is found in lower resolution maps containing (8×
8) or (10× 10) neurons (not shown). Trade drugs have a
slightly more pronounced density in the lower-left corner of
the map and a lower density in the remaining part (Figure
5c). At the given resolution of the map, several small
“druglike” and “natural productlike” islands can be found
and no clear separation of the two classes is observed. For
comparison, we performed the SOM projection with an older
version of the WDI from the year 1997 containing only 4429
trade drugs. This older set of compounds revealed some more
“holes” in pharmacophore space compared to the natural
product collection (not shown). We also found a more
conspicuous enrichment of small, nitrogen-rich structures in
the older WDI version. One reason for this observation might

be that many natural products and mimetics entered the drug
market during the past years.2,5

The SOM-based comparison of topological pharmacoph-
ores suggests that natural compounds and current trade drugs
have many similar constellations of generalized atom types.
Thus, it appears reasonable to build on scaffold structures
derived from natural compounds. One particular advantage
can be to obtain novel templates with side chain attachment
sites (“exit vectors”) that are appropriate for obtaining some
desired biological activity.13 In Figure 5d the distribution of
such a virtual combinatorial library in topological pharma-
cophore space is displayed. On the basis of the natural
template shown in Figure 2D (left-hand side molecule), a
virtual library was enumerated containing (38× 38)) 1444
molecules. A total of 38 generic side chains were attached
to each nitrogen atom of the scaffold by full permutation.
The side chains represent a collection of various lipophilic
and polar groups connected via one- or two-atom spacers to
the scaffold nitrogens. In the SOM projection the library is
not uniformly distributed. Pronounced density is observed
in neurons (1/9), (2/9), (18/8), (18/9), and (20/9). Note that
these neurons are direct neighbors due to the toroidal
architecture of the SOM. The original natural compound
leading to the library scaffold was assigned to neuron (18/
8). Our virtual combinatorial library can therefore be regarded
as a systematic variation of this scheme. Several trade drugs
clustered in neuron (18/8) and adjacent clusters have an

Figure 5. Self-organizing map (SOM) projections of the distributions of different compound libraries in a topological pharmacophore
space: (a) WDI trade drugs; (b) a natural product collection; (c) binary classification of the distribution of trade drugs and natural compounds
(black is natural products, white is trade drugs, 50% threshold, cf. Figure 4); (d) a virtual combinatorial library generated from a natural
product scaffold, where the gray shading indicates the occupancy of the neurons (clusters). Note that the (20× 20) map forms a torus. The
four depictions are based on a single SOM and have corresponding neuron indices.
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antibiotic or antiseptic activity. It might be worthwhile to
test the designed combinatorial structures in respective
assays. This result clearly shows that a single scaffold can
be used to explore a significant portion of “drug-relevant”
pharmacophore space.

One must be very careful about generalizing some of the
findings because of the biased data sets. Some structural
classes are over-represented in either one of the two data
collections used in the present analysis, e.g., the many natural
and synthetic steroids, lactam structures, and tetracyclins.
The BioscreenNP data collection includes many substances
of plant origin, including several thousand alkaloids, terpe-
noids, flavonoids, and coumarins; approximately 1000 pep-
tides, glycosides, and nucleosides; and several hundred
phenol compounds. This database is also rich in secondary
metabolites.8 Other collections of natural products (e.g., from
marine species) and different, more elaborated pharmacoph-
ore concepts will probably lead to different results and hence
give rise to miscellaneous interpretations.31 Furthermore, the
set of natural products used in the present study unquestion-
ably represents only a tiny fraction of what is realized by
the many different living organisms.1 It has been estimated
that less than 10% of the world’s biodiversity has been tested
for biological activity.4

Keeping these concerns in mind, what can we learn from
the present analysis? Certainly natural compounds provide
interesting novel scaffold architectures, which can be used
in combinatorial drug design approaches. In most cases the
scaffolds will have to be modified to provide synthetic
feasibility and stability and prevent adverse pharmacokinetic
effects. Synthetic drug design emphasized “nitrogen chem-
istry” in the past. It might be worthwhile to explore molecules
that are based on a “natural” scaffold aimed at lowering the
overall nitrogen count. Taking such a natural scaffold in
combination with synthetic side chains might become a
typical strategy in future drug design.5 Extraction of central
ring systems is a straightforward method to explore the
diversity of natural product architectures and provides a basis
for scaffold selection in combinatorial synthesis approaches.
A challenging application will be the use of natural-product-
derived molecular building blocks for computer-assisted de
novo design. We expect many attractive novel structures from
the amalgamation of such building blocks, with a collection
of building blocks that was obtained from retrosynthetic
fragmentation of the WDI.20,32,33
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